James–Stein shrinkage to improve k-means cluster analysis
نویسندگان
چکیده
منابع مشابه
James-Stein shrinkage to improve k-means cluster analysis
We study a general algorithm to improve accuracy in cluster analysis that employs the James-Stein shrinkage effect in k-means clustering. We shrink the centroids of clusters toward the overall mean of all data using a James-Stein-type adjustment, and then the James-Stein shrinkage estimators act as the new centroids in the next clustering iteration until convergence. We compare the shrinkage re...
متن کاملK-Means Cluster Analysis for Image Segmentation
Does K-Means reasonably divides the data into k groups is an important question that arises when one works on Image Segmentation? Which color space one should choose and how to ascertain that the k we determine is valid? The purpose of this study was to explore the answers to aforementioned questions. We perform K-Means on a number of 2-cluster, 3cluster and k-cluster color images (k>3) in RGB ...
متن کاملRanking and Clustering Iranian Provinces Based on COVID-19 Spread: K-Means Cluster Analysis
Introduction: The Coronavirus has crossed geographical borders. This study was performed to rank and cluster Iranian provinces based on coronavirus disease (COVID-19) recorded cases from February 19 to March 22, 2020. Materials and Methods: This cross-sectional study was conducted in 31 provinces of Iran using the daily number of confirmed cases. Cumulative Frequency (CF) and Adjusted CF (ACF)...
متن کاملFaster K-Means Cluster Estimation
K-means is a widely used iterative clustering algorithm. There has been considerable work on improving k-means in terms of mean squared error (MSE) and speed, both. However, most of the k-means variants tend to compute distance of each data point to each cluster centroid for every iteration. We propose two heuristics to overcome this bottleneck and speed up k-means. Our first heuristic predicts...
متن کاملPerformance Analysis of AIM-K-means & K-means in Quality Cluster Generation
Among all the partition based clustering algorithms K-means is the most popular and well known method. It generally shows impressive results even in considerably large data sets. The computational complexity of K-means does not suffer from the size of the data set. The main disadvantage faced in performing this clustering is that the selection of initial means. If the user does not have adequat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2010
ISSN: 0167-9473
DOI: 10.1016/j.csda.2010.03.018